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Abstract— We present a learning-based mapless motion plan-
ner by taking the sparse 10-dimensional range findings and
the target position with respect to the mobile robot coordinate
frame as input and the continuous steering commands as
output. Traditional motion planners for mobile ground robots
with a laser range sensor mostly depend on the obstacle map of
the navigation environment where both the highly precise laser
sensor and the obstacle map building work of the environment
are indispensable. We show that, through an asynchronous
deep reinforcement learning method, a mapless motion planner
can be trained end-to-end without any manually designed
features and prior demonstrations. The trained planner can be
directly applied in unseen virtual and real environments. The
experiments show that the proposed mapless motion planner
can navigate the nonholonomic mobile robot to the desired
targets without colliding with any obstacles.

I. INTRODUCTION

1) Deep Reinforcement Learning in mobile robots: Deep
Reinforcement Learning (deep-RL) methods achieve great
success in many tasks including video games [1] and simu-
lation control agents [2]. The applications of deep reinforce-
ment learning in robotics are mostly limited in manipulation
[3] where the workspace is fully observable and stable.
In terms of mobile robots, the complicated environments
enlarge the sample space extremely while deep-RL methods
normally sample the action from a discrete space to simplify
the problem [4], [5], [6]. Thus, in this paper, we focus on
the navigation problem of nonholonomic mobile robots with
continuous control of deep-RL, which is the essential ability
for the most widely used robot.

2) Mapless navigation: Motion planning aims at navigat-
ing robots to the desired target from the current position
without colliding with obstacles. For mobile nonholonomic
ground robots, traditional methods, like simultaneous local-
ization and mapping (SLAM), handle this problem through
the prior obstacle map of the navigation environment [7]
based on dense laser range findings. Manually designed
features are extracted to localize the robot and build the
obstacle map. There are two less addressed issues for this
task: (1) the time-consuming building and updating of the
obstacle map, and (2) the high dependence on the precise
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Fig. 1. A mapless motion planner was trained through asynchronous
deep-RL to navigate a nonholonomic mobile robot to the target position
collision free. The planner was trained in the virtual environment based on
sparse 10-dimensional range findings, 2-dimensional previous velocity, and
2-dimensional relative target position.

dense laser sensor for the mapping work and the local cost-
map prediction. It is still a challenge to rapidly generate
appropriate navigation behaviors for mobile robots without
an obstacle map and based on sparse range information.

Nowadays, low-cost methods, like WiFi localization [8]
and visible-light communication [9], provide lightweight
solutions for mobile robot localization. Thus, mobile robots
are able to get the real-time target position with respect to the
robot coordinate frame. And it is really challenging for a mo-
tion planner to generate global navigation behaviors with the
local observation and the target position information directly
without a global obstacle map. Thus, we present a learning-
based mapless motion planner. In virtual environments, a
nonholonomic differential drive robot was trained to learn
how to arrive at the target position with obstacle avoidance
through asynchronous deep reinforcement learning [10].

3) From virtual to real world: Most of the training of
deep-RL is implemented in a virtual environment because
the trial-and-error training process may lead to unexpected
damage to the real robot for specific tasks, like obstacle
avoidance in our case. The huge difference between the
structural simulation environment and the highly complicated
real-world environment is the central challenge to transfer the
trained model to a real robot directly. In this paper, we only
used 10-dimensional sparse range findings as the observation
input. This highly abstracted observation was sampled from
specific angles of the raw laser range findings based on
a trivial distribution. This brings two advantages: the first
is the reduction of the gap between the virtual and real
environments based on this abstracted observation, and the
second is the potential extension to low-cost range sensors
with distance information from only 10 directions.



We list the main contributions of this paper: (1) A mapless
motion planner was proposed by taking only 10-dimensional
sparse range findings and target relative information as
references. (2) The motion planner was trained end-to-end
from scratch through an asynchronous deep-RL method. The
planner can output continuous linear and angular velocities
directly. (3) The learned planner can generalize to a real
nonholonomic differential robot platform without any fine-
tuning to real-world samples.

II. RELATED WORK

A. Deep-Learning-based navigation

Benefiting from the improvement of high-performance
computational hardware, deep neural networks show great
potential for solving complex estimation problems. For
learning-based obstacle avoidance, deep neural networks
have been successfully applied on monocular images [11]
and depth images [12]. Chen et al. [13] used semantics in-
formation extracted from the image by deep neural networks
to decide the behavior of the autonomous vehicle. However,
their control commands are simply discrete actions like turn
left and turn right which may lead to rough navigation
behaviors.

Regarding learning from demonstrations, Pfeiffer et al.
[14] used a deep learning model to map the laser range
findings and the target position to the moving commands.
Kretzschmar et al. [15] used inverse reinforcement learn-
ing methods to make robots interact with humans in a
socially compliant way. Such kinds of trained models are
highly dependent on the demonstration information. A time-
consuming data collection procedure is also inevitable.

B. Deep Reinforcement Learning

Reinforcement learning has been widely applied in robotic
tasks [16], [17]. Minh et al. [1] utilized deep neural networks
for the function estimation of value-based reinforcement
learning which was called deep Q-network (DQN). Zhang
et al. [18] provided a solution for robot navigation based
on depth image trained with DQN, where successor features
were used to transfer the strategy to unknown environment
efficiently. The original DQN can only be used in tasks
with a discrete action space. To extend it to continuous
control, Lillicrap et al. [2] proposed deep deterministic policy
gradients (DDPG) to use deep neural networks on the actor-
critic reinforcement learning method where both the policy
and value of the reinforcement learning were represented
through hierarchical networks. Gu et al. [3] proposed con-
tinuous DQN based on the normalized advantage function
(NAF). The successes of these deep-RL methods are mainly
attributed to the memory replay strategy in fact. As off-
policy reinforcement learning methods, all of the transitions
can be used repeatedly. Therefore, asynchronous deep-RL
with multiple sample collection threads working in parallel
should improve the training efficiency of the specific policy
significantly. Gu et al. [19] proposed asynchronous NAF
and trained the model with real-world samples where a door
opening task was accomplished by a real robot arm.

A less addressed issue for off-policy methods is the
enormous requirement for data sampling. Minh et al. [10] op-
timize the deep-RL with asynchronous gradient descent from
parallel on-policy actor-learners (A3C). Based on this state-
of-the-art deep reinforcement learning method, Mirowski et
al. [20] trained a simulated agent to learn navigation in a
virtual environment through raw images. Loop closure and
depth estimation were proposed as well through parallel
supervised learning, but the holonomic motion behavior was
difficult to transfer to the real environment. Zhu et al. [4]
trained an image-based planner where the robot learned
to navigate to the referenced image place based on the
instant view. However, they defined a discrete action space
to simplify the task. On the other hand, A3C needs several
parallel simulation environments, which limited its extension
to some specific simulation engine like V-REP [21] which
can not be paralleled in the same machine. Thus, we choose
DDPG as our training algorithm. Compared with NAF,
DDPG needs less training parameters. And we extend DDPG
to an asynchronous version as [19] to improve the sampling
efficiency.

Generally, this paper focuses on developing a mapless
motion planner based on low-dimensional range findings. We
believe that this is the first time a deep-RL method being
applied on the real world continuous control of differential
drive mobile robots for navigation.

III. MOTION PLANNER IMPLEMENTATION

A. Asynchronous Deep Reinforcement Learning

Compared with the original DDPG, we separate the sam-
ple collecting process to another thread as in [19], called
Asynchronous DDPG (ADDPG). It can also be implemented
with multiple data collection threads as other asynchronous
methods.
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Fig. 2. Effectiveness test of the Asynchronous DDPG algorithm on the
OpenAI Gym task Pendulum-v0. Mean Q-value of the training batch in
every back-propagation iteration step is shown. The right figure is the count
of samples collected with the iteration steps increasing.

To show the effectiveness of the ADDPG algorithm, we
tested it in an OpenAI Gym task Pendulum-v0 with one
sample collecting thread and one training thread. Trivial
neural network structures were applied on the actor and critic
networks of this test model. The result is presented in Fig. 2.
The increasing of the Q-value of ADDPG is much faster than
the original DDPG, which means ADDPG is able to learn the



policy to finish this task in different states more efficiently.
This is mainly attributed to the samples collection thread in
parallel. As shown on the right of Fig. 2, the original DDPG
collects one sample every back-propagation iteration while
the parallel ADDPG collects almost four times more samples
than the original DDPG in every step.

B. Problem Definition

This paper aims to provide a mapless motion planner
for mobile ground robots. We try to find such a translation
function:

vt = f(xt, pt, vt−1),

where xt is the observation from the raw sensor information,
pt is the relative position of the target, and vt−1 is the
velocity of the mobile robot in the last time step. They can
be regarded as the instant state st of the mobile robot. The
model directly maps the state to the action, which is the next
time velocity vt, as shown in Fig 1. As an effective motion
planner, the control frequency must be guaranteed so that the
robot can react to new observations immediately.

C. Network Structure

The problem can be naturally transferred to a reinforce-
ment learning problem. In this paper, we use the extend
asynchronous DDPG [2] to train our model as described in
Section III-A.

Dense | 512 | ReLU

Dense (Lin Vel) | 1 | Sigmoid

Dense (Ang Vel) | 1 | Tanh

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense | 512 | ReLU

Actor Network Critic Network

Input (   ) | 14

Merge (   ) | 2

Input (   ) | 14

Input (   ) | 2

Dense (   ) | 1 | Linear

Fig. 3. The network structure for the ADDPG model. Every layer is
represented by its type, dimension and activation mode. Notice that the
Dense layer here means a fully-connected neural network. The Merge layer
simply combines the several input blobs into a single one.

As presented in Fig. 1 and the definition function, the
abstracted 10-dimensional laser range findings, the previous
action, and the relative target position are merged together
as a 14-dimensional input vector. The sparse laser range
findings are sampled from the raw laser findings between -90
and 90 degrees in a trivial and fixed angle distribution. The
range information is normalized to (0,1). The 2-dimensional
action of every time step includes the angular and the linear
velocities of the differential mobile robot. The 2-dimensional
target position is represented in polar coordinates (distance
and angle) with respect to the mobile robot coordinate frame.
As shown in Fig. 3, after 3 fully-connected neural network
layers with 512 nodes, the input vector is transferred to

the linear and angular velocity commands of the mobile
robot. To constrain the range of angular velocity in (−1, 1),
a hyperbolic tangent function (tanh) is used as the activa-
tion function. Moreover, the range of the linear velocity is
constrained in (0, 1) through a sigmoid function. Backward
moving is not expected because laser findings cannot cover
the back area of the mobile robot. The output actions are
multiplied with two hyperparameters to decide the final linear
and angular velocities directly executed by the mobile robot.
Considering the real dynamics of a Turtlebot, we choose
0.5 m/s as the max linear velocity and 1 rad/s as the max
angular velocity.

For the critic-network, the Q-value of the state and action
pair is predicted. We still use 3 fully-connected neural
network layers to process the input state. The action is
merged in the second fully-connected neural network layers.
The Q-value is finally activated through a linear activation
function:

y = kx+ b,

where x is the input of the last layer, y is the predicted Q-
value, and k and b are the trained weights and bias of this
layer.

D. Reward Function Definition

There are three different conditions for the reward directly
used by the critic network without clipping or normalization:

r(st, at) =

 rarrive if dt < cd
rcollision if minxt

< co
cr(dt−1 − dt)

If the robot arrives at the target through distance threshold
checking, a positive reward rarrive is arranged, but if the
robot collides with the obstacle through a minimum range
findings checking, a negative reward rcollision is arranged.
Both of these two conditions stop the training episode.
Otherwise, the reward is the difference in the distance from
the target compared with last time step, dt−1−dt, multiplied
by a hyper-parameter cr. This motivates the robot to get
closer to the target position.

IV. EXPERIMENTS

A. Training in simulation

The training procedure of our model was implemented
in virtual environments simulated by V-REP [21]. We con-
structed two indoor environments to show the influence of
the training environment on the motion planner, as shown
in Fig. 4. Obstacles in Env-2 are more compact around the
robot initial position. Both models of these two environments
were learned from scratch. A Turtlebot is used as the robot
platform. The target is represented by a cylinder object, as
labeled in the figure. In fact, it cannot be rendered by the
laser sensor mounted on the Turtlebot. In every episode, the
target position was initialized randomly in the whole area
and guaranteed to be collision-free with other obstacles.

The learning rates for the critic and actor network are the
same as 0.0001 where the hyper-parameters for the reward
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Fig. 4. The virtual training environments were simulated by V-REP [21].
We built two 10 × 10 m2 indoor environments with walls around them.
Several different shaped obstacles were located in the environments. A
Turtlebot was used as the robotics platform. The target labeled in the image
is represented by a cylinder object for visual purposes, but it cannot be
rendered by the laser sensor. Env-2 is more compact than Env-1.

function were set trivially. Moreover, the experiments result
also show that the effects of ADDPG are not depending on
the tuning of hyperparameters. We trained the model from
scratch with an Adam [22] optimizer on a single Nvidia
GeForce GTX 1080 GPU for 0.8m training steps which took
almost 20 hours.
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Fig. 5. Mean Q-value of the training batch samples in every training step.
Notice that two curves from different environments use different y-axes.

The mean Q-value of the training batch samples of the two
environments is shown in Fig. 5. The compact environment
Env-2 received more collision samples, so the Q-value is
much smaller than the Env-1, but the mean Q-value of Env-
2 increases much faster than Env-1.

B. Evaluation

To show the performance of the motion planner when it
is deployed on a real robot, we tested it both in the virtual
and real world on a laptop with an Intel Core i7-4700 CPU.
We used a Kobuki based Turtlebot as the mobile ground
platform. The robot subscribed the laser range findings from
a SICK TiM551 which has a field of view (FOV) of 270◦

and an angular resolution of 0.33◦. The scanning range is
from 0.05m to 10m, when implemented in the real world, as
shown in Fig. 6(a). This paper mainly introduces the mapless
motion planner so we did not test the planner effects with
different localization methods. The real time position of the
robot was provided by amcl to calculate the polar coordinates
of the target position.

(a) Platform

10 dimensional 

sparse findings

abstract

raw laser findings

mapless motion planner

output

linear/angular velocity

input

target position 

in robot frame

(b) Pipeline in real time

Fig. 6. The robotics platform is a Kobuki based Turtlebot. A SICK TiM570
laser range finder is mounted on the robot. A laptop with an Intel Core i7-
4700 CPU is used on-board. Notice that only 10-dimensional sparse range
findings extracted from the raw laser findings were used in the real time
evaluation as shown in Fig. 6(b) for the baseline planner and deep-RL trained
planners.

1) Baseline: We compared the deep-RL trained motion
planners with the state-of-art Move Base motion planner.
Move Base uses the full laser range information for local
cost-map calculation, while our mapless motion planner only
needs 10-dimensional sparse range findings from specific
directions for motion planning. Therefore, we implemented
a 10-dimensional Move Base using the laser range findings
from specific angles as the trained model, as shown in Fig.
6(b). These 10-dimensional findings were extended to an
810-dimensional vector covering the field of view through
an RBF kernel Gaussian process regression [23] for the local
cost-map prediction that we called 10-dimensional Move
Base in the following experiments. Here the deep-RL trained
models only considered the final position of the robot but not
the orientation of the desired target.

2) Virtual Environment Evaluation: To show the generic
adaptability of the model in other environments, we first built
a virtual test environment, as shown in Fig. 7, consisting
of a 7 × 10m2 area with multiple obstacles. We set 10
target positions for the motion planner. The motion planner
should navigate the robot to the target positions along the
sequence number. For Move Base, an obstacle map of the
global environment should be built before the navigation task
so that the planner can calculate the path. For our deep-RL
trained models, as shown in Fig 7(c) and Fig 7(d), the map
is only for trajectory visualization.

The trajectory tracking of the four planners is shown in
Fig. 7 as a qualitative evaluation. Every motion planner was
executed five times for all of the target positions from 0 to
10 in order and one of the paths is highlighted in the figure.

As shown in 7(b), the 10-dimensional Move Base cannot
finish the navigation task successfully: the navigation was
interrupted and aborted because of incorrect prediction of
the local cost-map so the robot was not able to find the path
by itself and human intervention had to be added to help
the robot finish all of the navigation tasks. The interruption
parts are labeled as black segments in 7(b). However, deep-
RL trained mapless motion planners accomplished the tasks
collision free, as shown in Fig. 7(c) and Fig. 7(d). The deep-
RL trained planners show great adaptability to unseen envi-
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Fig. 7. Trajectory tracking in the virtual test environment. (a) Original Move Base, (b) 10-dimensional Move Base, and deep-RL trained models in (c)
Env-1 and (d) Env-2 are compared. 10-dimensional Move Base was not able to finish the navigation tasks.
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Fig. 8. Quantity evaluations between the baseline motion planner and the proposed mapless motion planner, including max control frequency, traveling
time, and traveling distance.

ronments. We chose three metrics to evaluate the different
planners quantitatively, as listed in Fig. 8: (1) max control
frequency: max moving commands output times per minute.
(2) time: traveling time for all of the 10 target positions. (3)
distance: path distance for all of the 10 target positions.

The max control frequency reflects the query efficiency
of the motion planner: the query of trained mapless motion
planners only took almost 1ms which is 7 times faster
than the map-based motion planner. Compared with the 10-
dimensional Move Base, Env-2 took almost the same time to
finish all of the navigation tasks even though the path was
not the optimally shortest. The Env-1 motion planning results
seem not as smooth as the other motion planners.

3) Real Environment Evaluation: We implemented a sim-
ilar navigation task but in the real world environment.
According to the trajectory in Fig. 7, the motion planner
trained in Env-2 generated a smoother trajectory than the one
trained in Env-1, and the Env-2 model seemed to be more
sensitive to the obstacles than the Env-1 model. Preliminary
experiments in the real world showed that the Env-1 model
was not able to finish the navigation task successfully. So we
only compared the trajectory in the real world between 10-
dimensional Move Base and the Env-2 model. We navigated
the robot in a complex indoor office environment, as shown
in Fig. 9. The robot should arrive at the targets based on the
sequence from 0 to 9 labeled in the figure.

From the trajectory figure, 10-dimensional Move Base
cannot go across the seriously narrow area because of the
misprediction of the local cost-map based on the limited
range findings. 10-dimensional Move Base was not able to
find an effective path to arrive at the desired target. We added
human intervention to help the 10-dimensional Move Base
finish the navigation task. The intervention segments of the
path are labeled in black in Fig 9.

The Env-2 model was able to accomplish all of the tasks
successfully. However, sometimes the robot was not able to
go across the narrow route smoothly. A recovery behavior

like the rotating recovery in Move Base was developed by
the mapless motion planner. Even then, obstacle collision
never happened for the mapless motion planner. A brief
video about the performance of the mapless planner in
different training stages and in test environments is available
at https://youtu.be/9AOIwBYIBbs.

V. DISCUSSION

The experiments in the virtual and real world proved that
the deep-RL trained mapless motion planner can be trans-
ferred directly to unseen environments. The different navi-
gation trajectories of the two training environments showed
that the trained planner is influenced by the environment
to some extent. Env-2 is much more aggressive with closer
obstacles so that the robot can navigate in the complex real
environment successfully.

In this paper, we compared our deep learning trained
model with the original and low-dimensional map-based
motion planner. Compared with the trajectories of Move
Base, the path generated from our planner is more tortu-
ous. A possible explanation is that the network has neither
the memory of the previous observation nor the long-term
prediction ability. Thus LSTM and RNN [24] are possible
solutions for that problem. We set this revision as future
work.

However, we are not aiming to replace the map-based
motion planner: it is obvious when the application scenario
is a large-scale and complex environment, the map of the
environment can always provide a reliable navigation path.
Our target is to provide a low-cost solution for an indoor
service robot with several range sensors, like a light-weight
sweeping robot. The experiments showed that Move Base
with sparse range findings can not be adapted to narrow
indoor environments. Although we used the range findings
from a laser sensor, it is certain that this 10-dimensional
information can be replaced by low-cost range sensors.

In addition, reinforcement learning methods provide a
considerable online learning strategy. The effects of the

https://youtu.be/9AOIwBYIBbs
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Fig. 9. Trajectory tracking in the real test environment. 10-dimensional Move Base, and the deep-RL trained model in Env-2 are compared. 10-dimensional
Move Base was not able to finish the navigation tasks. Human innervations were added labled as black segments in Fig. 9(a).

motion planner can be developed considerably with training
in different environments continuously. In this developing
procedure, no feature revision or human labeling is needed.
On the other hand, the application of the deep neural
networks provides a solution for multiple sensor inputs like
RGB image and depth. The proposed model has shown the
ability to understand different information combinations like
range sensor findings and target position.

VI. CONCLUSION

In this paper, a mapless motion planner was trained end-
to-end through continuous control deep-RL from scratch.
We revised the state-of-art continuous deep-RL method so
that the training and sample collection can be executed in
parallel. By taking the 10-dimensional sparse range findings
and the target position relative to the mobile robot coordinate
frame as input, the proposed motion planner can be directly
applied in unseen real environments without fine-tuning,
even though it is only trained in a virtual environment.
When compared to the low-dimensional map-based motion
planner, our approach proved to be more robust to extremely
complicated environments.
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